题目内容
【题目】大于1的正整数m的三次幂可“分裂”成若干个连续奇数的和.如23=3+5,33=7+9+11,43=13+15+17+19,…,若m3“分裂”后,其中有一个奇数是347,则m的值是_____.
【答案】19;
【解析】
观察可知,分裂成的奇数的个数与底数相同,然后求出到m3的所有奇数的个数的表达式,再求出奇数347的是从3开始的第173个数,然后确定出173所在的范围即可得解.
解:∵底数是2的分裂成2个奇数,底数为3的分裂成3个奇数,底数为4的分裂成4个奇数,
∴m3分裂成m个奇数,
所以,到m3的奇数的个数为:2+3+4+…+m=,
∵2n+1=347,n=173,
∴奇数347是从3开始的第173个奇数,
∵=170,
=189,
∴第173个奇数是底数为19的数的立方分裂的奇数的其中一个,
即m=19.
故答案为:19.
练习册系列答案
相关题目