题目内容
【题目】如图,点E、F分别是菱形ABCD的边BC、CD上的点,且∠EAF=∠D=60°,∠FAD=45°,则∠CFE的度数为( )
A. 30° B. 45° C. 60° D. 75°
【答案】B
【解析】首先证明△ABE≌△ACF,然后推出AE=AF,证明△AEF是等边三角形,最后可求出∠AFD,∠CFE的度数.
连接AC,
∵菱形ABCD,∴AB=BC,∠B=∠D=60°,
∴△ABC为等边三角形,∠BCD=120°
∴AB=AC,∠ACF=∠BCD=60°,
∴∠B=∠ACF,
∵△ABC为等边三角形,
∴∠BAC=60°,即∠BAE+∠EAC=60°,
又∠EAF=60°,即∠CAF+∠EAC=60°,
∴∠BAE=∠CAF,
在△ABE与△ACF中,
,
∴△ABE≌△ACF(ASA),
∴AE=AF,
又∠EAF=∠D=60°,则△AEF是等边三角形,
∴∠AFE=60°,
又∠AFD=180°-45°-60°=75°,
则∠CFE=180°-75°-60°=45°.
故选B.
练习册系列答案
相关题目