题目内容

【题目】如图1所示,在ABC中,∠ACB为锐角,点D为射线BC上一动点,连接AD,以AD为直角边,A为直角顶点,在AD左侧作等腰直角三角形ADF,连接CF,AB=AC,BAC=90°.

(1)当点D在线段BC上时(不与点B重合),线段CFBD的数量关系与位置关系分别是什么?请给予证明.

(2)当点D在线段BC的延长线上时,(1)的结论是否仍然成立?请在图2中画出相应的图形,并说明理由.

【答案】(1)CF=BD,且CFBD,证明见解析;(2)(1)的结论仍然成立,理由见解析.

【解析】

(1)根据同角的余角相等求出∠CAF=∠BAD,然后利用“边角边”证明△ACF和△ABD全等,根据全等三角形对应边相等可得CF=BD,全等三角形对应角相等可得∠ACF=∠B,然后求出∠BCF=90°,从而得到CF⊥BD;

(2)先求出∠CAF=∠BAD,然后与①的思路相同求解即可;

解:(1)CF=BD,且CFBD,证明如下:

∵∠FAD=CAB=90°,

∴∠FAC=DAB.

ACFABD中,

∴△ACF≌△ABD

CF=BD,FCA=DBA,

∴∠FCD=FCA+ACD=DBA+ACD=90°,

FCCB,

CF=BD,且CFBD.

(2)(1)的结论仍然成立,如图2,

∵∠CAB=DAF=90°,

∴∠CAB+CAD=DAF+CAD,

即∠CAF=BAD,

ACFABD中,

∴△ACF≌△ABD,

CF=BD,ACF=B,

AB=AC,BAC=90°,

∴∠B=ACB=45°,

∴∠BCF=ACF+ACB=45°+45°=90°,

CFBD;

CF=BD,且CFBD.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网