题目内容
【题目】如图,已知A(﹣2,0),B(4,0),抛物线y=ax2+bx﹣1过A、B两点,并与过A点的直线y=﹣x﹣1交于点C.
(1)求抛物线解析式及对称轴;
(2)在抛物线的对称轴上是否存在一点P,使四边形ACPO的周长最小?若存在,求出点P的坐标,若不存在,请说明理由;
(3)点M为y轴右侧抛物线上一点,过点M作直线AC的垂线,垂足为N.问:是否存在这样的点N,使以点M、N、C为顶点的三角形与△AOC相似,若存在,求出点N的坐标,若不存在,请说明理由.
【答案】(1)抛物线解析式为:y=,抛物线对称轴为直线x=1;(2)存在P点坐标为(1,﹣);(3)N点坐标为(4,﹣3)或(2,﹣1)
【解析】(1)由待定系数法求解即可;
(2)将四边形周长最小转化为PC+PO最小即可;
(3)利用相似三角形对应点进行分类讨论,构造图形.设出点N坐标,表示点M坐标代入抛物线解析式即可.
(1)把A(-2,0),B(4,0)代入抛物线y=ax2+bx-1,得
解得
∴抛物线解析式为:y=x2x1
∴抛物线对称轴为直线x=-=1
(2)存在
使四边形ACPO的周长最小,只需PC+PO最小
∴取点C(0,-1)关于直线x=1的对称点C′(2,-1),连C′O与直线x=1的交点即为P点.
设过点C′、O直线解析式为:y=kx
∴k=-
∴y=-x
则P点坐标为(1,-)
(3)当△AOC∽△MNC时,
如图,延长MN交y轴于点D,过点N作NE⊥y轴于点E
∵∠ACO=∠NCD,∠AOC=∠CND=90°
∴∠CDN=∠CAO
由相似,∠CAO=∠CMN
∴∠CDN=∠CMN
∵MN⊥AC
∴M、D关于AN对称,则N为DM中点
设点N坐标为(a,-a-1)
由△EDN∽△OAC
∴ED=2a
∴点D坐标为(0,-a1)
∵N为DM中点
∴点M坐标为(2a,a1)
把M代入y=x2x1,解得
a=4
则N点坐标为(4,-3)
当△AOC∽△CNM时,∠CAO=∠NCM
∴CM∥AB则点C关于直线x=1的对称点C′即为点N
由(2)N(2,-1)
∴N点坐标为(4,-3)或(2,-1)