题目内容

【题目】如图,已知A(﹣2,0),B(4,0),抛物线y=ax2+bx﹣1A、B两点,并与过A点的直线y=﹣x﹣1交于点C.

(1)求抛物线解析式及对称轴;

(2)在抛物线的对称轴上是否存在一点P,使四边形ACPO的周长最小?若存在,求出点P的坐标,若不存在,请说明理由;

(3)点My轴右侧抛物线上一点,过点M作直线AC的垂线,垂足为N.问:是否存在这样的点N,使以点M、N、C为顶点的三角形与AOC相似,若存在,求出点N的坐标,若不存在,请说明理由.

【答案】(1)抛物线解析式为:y=,抛物线对称轴为直线x=1;(2)存在P点坐标为(1,﹣);(3)N点坐标为(4,﹣3)或(2,﹣1)

【解析】(1)由待定系数法求解即可;

(2)将四边形周长最小转化为PC+PO最小即可;

(3)利用相似三角形对应点进行分类讨论,构造图形.设出点N坐标,表示点M坐标代入抛物线解析式即可.

(1)把A(-2,0),B(4,0)代入抛物线y=ax2+bx-1,得

解得

∴抛物线解析式为:y=x2x1

∴抛物线对称轴为直线x=-=1

(2)存在

使四边形ACPO的周长最小,只需PC+PO最小

∴取点C(0,-1)关于直线x=1的对称点C′(2,-1),连C′O与直线x=1的交点即为P点.

设过点C′、O直线解析式为:y=kx

∴k=-

∴y=-x

则P点坐标为(1,-

(3)当△AOC∽△MNC时,

如图,延长MN交y轴于点D,过点N作NE⊥y轴于点E

∵∠ACO=∠NCD,∠AOC=∠CND=90°

∴∠CDN=∠CAO

由相似,∠CAO=∠CMN

∴∠CDN=∠CMN

∵MN⊥AC

∴M、D关于AN对称,则N为DM中点

设点N坐标为(a,-a-1)

由△EDN∽△OAC

∴ED=2a

∴点D坐标为(0,-a1)

∵N为DM中点

∴点M坐标为(2a,a1)

把M代入y=x2x1,解得

a=4

则N点坐标为(4,-3)

当△AOC∽△CNM时,∠CAO=∠NCM

∴CM∥AB则点C关于直线x=1的对称点C′即为点N

由(2)N(2,-1)

∴N点坐标为(4,-3)或(2,-1)

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网