题目内容

【题目】关于x的一元二次方程ax2﹣3x﹣1=0的两个不相等的实数根都在﹣1和0之间(不包括﹣1和0),则a的取值范围是

【答案】 <a<﹣2
【解析】解:∵关于x的一元二次方程ax2﹣3x﹣1=0的两个不相等的实数根

∴△=(﹣3)2﹣4×a×(﹣1)>0,

解得:a>

设f(x)=ax2﹣3x﹣1,如图,

∵实数根都在﹣1和0之间,

∴﹣1

∴a

且有f(﹣1)<0,f(0)<0,

即f(﹣1)=a×(﹣1)2﹣3×(﹣1)﹣1<0,f(0)=﹣1<0,

解得:a<﹣2,

<a<﹣2,

所以答案是: <a<﹣2.

【考点精析】掌握抛物线与坐标轴的交点是解答本题的根本,需要知道一元二次方程的解是其对应的二次函数的图像与x轴的交点坐标.因此一元二次方程中的b2-4ac,在二次函数中表示图像与x轴是否有交点.当b2-4ac>0时,图像与x轴有两个交点;当b2-4ac=0时,图像与x轴有一个交点;当b2-4ac<0时,图像与x轴没有交点.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网