题目内容
【题目】如图,在菱形ABCD中MN分别在AB、CD上且AM=CN,MN与AC交于点O,连接BO若∠DAC=62°,则∠OBC的度数为( )
A. 28°B. 52°C. 62°D. 72°
【答案】A
【解析】
连接OB,根据菱形的性质以及AM=CN,利用ASA可得△AMO≌△CNO,可得AO=CO,然后可得BO⊥AC,继而可求得∠OBC的度数.
解:连接OB,
∵四边形ABCD为菱形
∴AB∥CD,AB=BC,
∴∠MAO=∠NCO,∠AMO=∠CNO,
在△AMO和△CNO中,
∵,
∴△AMO≌△CNO(ASA),
∴AO=CO,
∵AB=BC,
∴BO⊥AC,
∴∠BOC=90°,
∵∠DAC=62°,
∴∠BCA=∠DAC=62°,
∴∠OBC=90°-62°=28°.
故选:A.
练习册系列答案
相关题目