题目内容
【题目】如图,∠MAN=30°,点O为边AN上一点,以O为圆心,4为半径
作⊙O交AN于D、E两点.
⑴ 当⊙O与AM相切时,求AD的长;
⑵ 如果AD=2,那么AM与⊙O又会有怎样的位置关系?并说明理由.
【答案】(1)4;(2) AM与⊙O相交,理由见解析
【解析】分析:(1)在Rt△AOF中,由OF求得AO,即可求解;(2)在Rt△AOF中,由AO求得OF的长,比较它与圆的半径之间的大小.
详解:⑴如图1,设切点为F,连接FO,
∵⊙O与AM相切于点F,OF为半径,
∴FO⊥AM,∴∠AFO=90°.
∵∠A=30°,OF=4,
∴AO=2OF,AD=AO–DO=8-4=4.
⑵AM与⊙O相交.
理由:如图2,过点O作OF⊥AM于F,
∴∠AFO=90°,
∵AD=2,DO=4;∴AO=AD+DO=6,又∠A=30°,
∴OF=AO=×6=3<4,
∴AM与⊙O相交.
练习册系列答案
相关题目
【题目】公园门票价格规定如下表:
购票张数 | 1~50张 | 51~100张 | 100张以上 |
每张票的价格 | 15元 | 13元 | 11元 |
某校七年级(1)(2)两个班共102人去游园,其中(1)班超过40人,不足50人,经估算,如果两个班都以班为单位购票,则一共应付1422元.问:
(1)两个班各有多少学生?
(2)如果两个班联合起来,作为一个团体购票,可比两个班都以班为单位购票省多少元钱?
(2)如果七年级(1)班单独组织去游园,作为组织者的你如何购票才最省钱?