题目内容
【题目】如图,在正方形中,点是对角线上一个动点(不与点重合),连接过点作,交直线于点.作交直线于点,连接.
(1)由题意易知,,观察图,请猜想另外两组全等的三角形 ; ;
(2)求证:四边形是平行四边形;
(3)已知,的面积是否存在最小值?若存在,请求出这个最小值;若不存在,请说明理由.
【答案】(1);(2)见解析;(3)存在,2
【解析】
(1)利用正方形的性质及全等三角形的判定方法证明全等即可;
(2)由(1)可知,则有,从而得到,最后利用一组对边平行且相等即可证明;
(3)由(1)可知,则,从而得到是等腰直角三角形,则当最短时,的面积最小,再根据AB的值求出PB的最小值即可得出答案.
解:(1)四边形是正方形,
,
,
,
,
,
在和中,
在和中,
,
故答案为;
(2)证明:由(1)可知,
,
四边形是平行四边形.
(3)解:存在,理由如下:
是等腰直角三角形,
最短时,的面积最小,
当时,最短,此时,
的面积最小为.
练习册系列答案
相关题目