题目内容
【题目】如图,在一块斜边长30cm的直角三角形木板(Rt△ACB)上截取一个正方形CDEF,点D在边BC上,点E在斜边AB上,点F在边AC上,若AF:AC=1:3,则这块木板截取正方形CDEF后,剩余部分的面积为________
【答案】100cm2
【解析】
设AF=x,根据正方形的性质用x表示出EF、CF,证明△AEF∽△ABC,根据相似三角形的性质求出BC,根据勾股定理列式求出x,根据三角形的面积公式、正方形的面积公式计算即可.
设AF=x,
∵AF:AC=1:3,
∴AC=3x,CF=2x,
∵四边形CDEF为正方形,
∴EF=CF=2x,EF∥BC,
∴△AEF∽△ABC,
∴==,
∴BC=6x,
在Rt△ABC中,AB2=AC2+BC2,即302=(3x)2+(6x)2,
解得,x=2,
∴AC=6,BC=12,
∴剩余部分的面积=×12×6﹣4×4=100(cm2)
故答案为:100cm2.
练习册系列答案
相关题目