题目内容
【题目】如图,△ABC的高AD与中线BE相交于点F,过点C作BE的平行线、过点F作AB的平行线,两平行线相交于点G,连接BG.
(1)若AE=2.5,CD=3,BD=2,求AB的长;
(2)若∠CBE=30°,求证:CG=AD+EF.
【答案】(1);(2)见解析.
【解析】
(1)BE是△ABC的中线,则AC=5,由勾股定理求出AD的长,再由勾股定理求得AB的长;
(2)过点E作EM∥FG,作EN∥AD,先得出EN=AD,然后证明EN=BE,从而有AD=BE.再证明△ABE≌△EMC,得出BE=MC,再推导出四边形EFGM是平行四边形,得出EF=GM,继而可得出结论.
(1)解:∵BE是△ABC的中线,
∴AE=EC=2.5,∴AC=5,
∵AD是△ABC的高,
∴AD⊥BC,
,
;
(2)证明:如图,过点E作EM∥FG,作EN∥AD.
∵BE是中线,即E为AC的中点,∴EN为△ACD的中位线,∴EN=AD.
∵AD是高,∴EN⊥BC,∴∠ENB=90°.
∵∠CBE=30°,∴EN=BE.
∴AD=BE.
∵FG∥AB,EM∥FG,∴EM∥AB,
∴∠BAE=∠MEC.
∵EB∥CG,∴∠AEB=∠ECM.
在△ABE和△EMC中,
∵,
∴△ABE≌△EMC(ASA),
∴BE=MC.
∵EM∥FG,BE∥GC,
∴四边形EFGM是平行四边形,
∴EF=GM.
∴GC=GM+MC=EF+BE=EF+AD.
练习册系列答案
相关题目