题目内容
【题目】如图,菱形ABCD的对角线AC、BD相交于点O,过点D作DE∥AC且DE=OC,连接CE、OE,连接AE交OD于点F.
(1)求证:OE=CD;
(2)若菱形ABCD的边长为4,∠ABC=60°,求AE的长.
【答案】(1)证明见解析;(2)2.
【解析】
(1)只要证明四边形OCED是平行四边形,∠COD=90°即可;
(2)在Rt△ACE中,利用勾股定理即可解决问题;
(1)证明:∵DE=OC,DE∥AC,
∴四边形OCED是平行四边形,
∵四边形ABCD是菱形,
∴AC⊥BD,
∴∠COD=90°,
∴平行四边形OCED是矩形.
∴OE=CD.
(2)解:在菱形ABCD中,∠ABC=60°,
∴AC=AB=4,
∴在矩形OCED中,CE=OD==2,
∴在△ACE中,AE==2.
练习册系列答案
相关题目
【题目】为了争创全国文明卫生城市,优化城市环境,某市公交公司决定购买10辆全新的混合动力公交车,现有两种型号,它们的价格及年省油量如下表:
型 号 | ||
价格(万元/辆) | ||
年省油量(万升/辆) | 2.4 | 2 |
经调查,购买一辆型车比购买一辆型车多20万元,购买2辆型车比购买3辆型车少60万元.
(1)请求出和的值;
(2)若购买这批混合动力公交车(两种车型都要有), 每年能节省的油量不低于22.4万升,请问有几种购车方案?(不用一一列出)请求出最省钱的购车方案所需的车款.