题目内容
【题目】如图,在直角坐标系中,Rt△OAB的直角顶点A在x轴上,OA=4,AB=3.动点M从点A出发,以每秒1个单位长度的速度,沿AO向终点O移动;同时点N从点O出发,以每秒1.25个单位长度的速度,沿OB向终点B移动.当两个动点运动了x秒(0<x<4)时,解答下列问题:
(1)求点N的坐标(用含x的代数式表示);
(2)设△OMN的面积是S,求S与x之间的函数表达式;当x为何值时,S有最大值?最大值是多少?
(3)在两个动点运动过程中,是否存在某一时刻,使△OMN是直角三角形?若存在,求出x的值;若不存在,请说明理由.
【答案】
(1)
解:根据题意得:MA=x,ON=1.25x,
在Rt△OAB中,由勾股定理得:OB= = =5,
作NP⊥OA于P,如图1所示:
则NP∥AB,
∴△OPN∽△OAB,
∴ ,
即 ,
解得:OP=x,PN= ,
∴点N的坐标是(x, )
(2)
解:在△OMN中,OM=4﹣x,OM边上的高PN= ,
∴S= OMPN= (4﹣x) =﹣ x2+ x,
∴S与x之间的函数表达式为S=﹣ x2+ x(0<x<4),
配方得:S=﹣ (x﹣2)2+ ,
∵﹣ <0,
∴S有最大值,
当x=2时,S有最大值,最大值是
(3)
解:存在某一时刻,使△OMN是直角三角形,理由如下:
分两种情况:①若∠OMN=90°,如图2所示:
则MN∥AB,
此时OM=4﹣x,ON=1.25x,
∵MN∥AB,
∴△OMN∽△OAB,
∴ ,
即 ,
解得:x=2;
②若∠ONM=90°,如图3所示:
则∠ONM=∠OAB,
此时OM=4﹣x,ON=1.25x,
∵∠ONM=∠OAB,∠MON=∠BOA,
∴△OMN∽△OBA,
∴ ,
即 ,
解得:x= ;
综上所述:x的值是2秒或 秒
【解析】(1)由勾股定理求出OB,作NP⊥OA于P,则NP∥AB,得出△OPN∽△OAB,得出比例式 ,求出OP、PN,即可得出点N的坐标;(2)由三角形的面积公式得出S是x的二次函数,即可得出S的最大值;(3)分两种情况:①若∠OMN=90°,则MN∥AB,由平行线得出△OMN∽△OAB,得出比例式,即可求出x的值;②若∠ONM=90°,则∠ONM=∠OAB,证出△OMN∽△OBA,得出比例式,求出x的值即可.
【考点精析】掌握二次函数的最值和勾股定理的概念是解答本题的根本,需要知道如果自变量的取值范围是全体实数,那么函数在顶点处取得最大值(或最小值),即当x=-b/2a时,y最值=(4ac-b2)/4a;直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2.