题目内容
【题目】因式分解:x3﹣4xy2= .
【答案】x(x+2y)(x﹣2y)【解析】解:x3﹣4xy2 , =x(x2﹣4y2),=x(x+2y)(x﹣2y).
【题目】某商店经销一种双肩包,已知这种双肩包的成本价为每个30元.市场调查发现,这种双肩包每天的销售量y(单位:个)与销售单价x(单位:元)有如下关系:y=-x+60(30≤x≤60).
设这种双肩包每天的销售利润为w元.
(1)求w与x之间的函数解析式;
(2)这种双肩包销售单价定为多少元时,每天的销售利润最大?最大利润是多少元?
(3)如果物价部门规定这种双肩包的销售单价不高于48元,该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为多少元?
【题目】先化简,后求值:a2a4﹣a8÷a2+(a3)2 , 其中a=﹣1.
【题目】数学兴趣小组研究某型号冷柜温度的变化情况,发现该冷柜的工作过程是:当温度达到设定温度时,制冷停止,此后冷柜中的温度开始逐渐上升,当上升到时,制冷开始,温度开始逐渐下降,当冷柜自动制冷至时,制冷再次停止,……,按照以上方式循环进行.
同学们记录了44内15个时间点冷柜中的温度随时间的变化情况,制成下表:
(1)通过分析发现,冷柜中的温度是时间的函数.
①当时,写出一个符合表中数据的函数解析式 ;
②当时,写出一个符合表中数据的函数解析式 ;
(2)的值为 ;
(3)如图,在直角坐标系中,已描出了上表中部分数据对应的点,请描出剩余对应的点,并画出时温度随时间变化的函数图象.
【题目】如图,矩形ABCD的对角线AC,BD相交于点O,∠ACB=30°,BC=3,分别过点B,C作BE∥AC,CE∥BD,且BE,CE相交于点E. (1)求AB,AC的长;(2)判断四边形BOCE的形状.
【题目】已知正方形ABCD,P为射线AB上的一点,以BP为边作正方形BPEF,使点F在线段CB的延长线上,连接EA,EC.
(1)如图1,若点P在线段AB的延长线上,求证:EA=EC;
(2)如图2,若点P在线段AB的中点,连接AC,判断△ACE的形状,并说明理由;
(3)如图3,若点P在线段AB上,连接AC,当EP平分∠AEC时,设AB=a,BP=b,求a:b及∠AEC的度数.
【题目】下列图案中是中心对称图形但不是轴对称图形的是( )A.B.C.D.
【题目】如图,在直角坐标系中,Rt△ABC的直角边AC在x轴上,∠ACB=90°,AC=1,反比例函数(k>0)的图象经过BC边的中点D(3,1).
(1)求这个反比例函数的表达式;
(2)若△ABC与△EFG成中心对称,且△EFG的边FG在y轴的正半轴上,点E在这个函数的图象上.
①求OF的长;
②连接AF,BE,证明四边形ABEF是正方形.
【题目】如图,在四边形ABCD中,AB=AD,∠BAD=∠BCD=90°,连接AC.若AC=6,则四边形ABCD的面积为 .