题目内容
【题目】某商店经销一种双肩包,已知这种双肩包的成本价为每个30元.市场调查发现,这种双肩包每天的销售量y(单位:个)与销售单价x(单位:元)有如下关系:y=-x+60(30≤x≤60).
设这种双肩包每天的销售利润为w元.
(1)求w与x之间的函数解析式;
(2)这种双肩包销售单价定为多少元时,每天的销售利润最大?最大利润是多少元?
(3)如果物价部门规定这种双肩包的销售单价不高于48元,该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为多少元?
【答案】(1)w=-x2+90x-1800;(2)当x=45时,w有最大值,最大值是225(3)该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为40元
【解析】试题分析:(1)销售利润=(销售单价-成本)×销售量,所以;(2)利用顶点式求二次函数极值,可求出每天最大利润;(3)把w=200带到解析式中,求出销售单价,把超过42元的舍掉.
试题解析:(1)
所以w与x的函数关系式为:(30≤x≤60)
(2).
∵﹣1<0,
∴当x=45时,w有最大值.w最大值为225.
答:销售单价定为45元时,每天销售利润最大,最大销售利润225元.
(3)当w=200时,可得方程.
解得x1=40,x2=50.
∵50>42,
∴x2=50不符合题意,应舍去.
答:该商店销售这种健身球每天想要获得200元的销售利润,销售单价应定为40元.
练习册系列答案
相关题目