题目内容
如图,四边形ABCD是平行四边形,以AB为直径的⊙O经过点D,E是⊙O上一点,且∠AED=45°.
(1)试判断CD与⊙O的位置关系,并说明理由;
(2)若⊙O的半径为3cm,AE=5cm,求∠ADE的正弦值.
(1)试判断CD与⊙O的位置关系,并说明理由;
(2)若⊙O的半径为3cm,AE=5cm,求∠ADE的正弦值.
(1)CD与⊙O相切.
理由是:连接OD.
则∠AOD=2∠AED=2×45°=90°,
∵四边形ABCD是平行四边形,
∴AB∥DC,
∴∠CDO=∠AOD=90°.
∴OD⊥CD,
∴CD与⊙O相切.
(2)连接BE,由圆周角定理,得∠ADE=∠ABE.
∵AB是⊙O的直径,
∴∠AEB=90°,AB=2×3=6(cm).
在Rt△ABE中,
sin∠ABE=
=
,
∴sin∠ADE=sin∠ABE=
.
理由是:连接OD.
则∠AOD=2∠AED=2×45°=90°,
∵四边形ABCD是平行四边形,
∴AB∥DC,
∴∠CDO=∠AOD=90°.
∴OD⊥CD,
∴CD与⊙O相切.
(2)连接BE,由圆周角定理,得∠ADE=∠ABE.
∵AB是⊙O的直径,
∴∠AEB=90°,AB=2×3=6(cm).
在Rt△ABE中,
sin∠ABE=
AE |
AB |
5 |
6 |
∴sin∠ADE=sin∠ABE=
5 |
6 |
练习册系列答案
相关题目