题目内容
如图,AB为⊙O的弦,若OA⊥OD且CD=BD.求证:BD是⊙O的切线.
证明:连接OB,
∵OA=OB,CD=DB,
∴∠OAC=∠OBC,∠DCB=∠DBC.
∵∠OAC+∠ACO=90°,∠ACO=∠DCB,
∴∠OBC+∠DBC=90°.
∴OB⊥BD.
即BD是⊙O的切线.
∵OA=OB,CD=DB,
∴∠OAC=∠OBC,∠DCB=∠DBC.
∵∠OAC+∠ACO=90°,∠ACO=∠DCB,
∴∠OBC+∠DBC=90°.
∴OB⊥BD.
即BD是⊙O的切线.
练习册系列答案
相关题目