题目内容
如图,AB∥DC,M和N分别是AD和BC的中点,如果四边形ABCD的面积为36cm2,那么S△QPO-S△CDO=______cm2.
∵AB∥DC,
∴∠DCM=∠AQM,
又∵∠CMD=∠QMA,
M是AD中点,
∴AM=DM,
∴△AQM≌△DCM,
∴S△AQM=S△DCM=S△OMD+S△COD,
同理可得S△BPN=S△CON+S△COD,
∴S△QPO-S△CDO=S△AQM+S△BPN+S五边形AMONB-S△CDO
=S△OMD+S△COD+S△CON+S△COD+S五边形AMONB-S△CDO=S△OMD+S△COD+S△CON+S五边形AMONB=S△CDM+S△CON+S五边形AMONB=S梯形ABCD.
∴S△QPO-S△CDO=36.
练习册系列答案
相关题目