题目内容

【题目】如图,已知⊙O的半径为2,AB为直径,CD为弦.AB与CD交于点M,将 沿CD翻折后,点A与圆心O重合,延长OA至P,使AP=OA,连接PC.
(1)求CD的长;
(2)求证:PC是⊙O的切线;
(3)点G为 的中点,在PC延长线上有一动点Q,连接QG交AB于点E.交 于点F(F与B、C不重合).问GEGF是否为定值?如果是,求出该定值;如果不是,请说明理由.

【答案】
(1)

解:如图,

连接OC,

沿CD翻折后,点A与圆心O重合,

∴OM= OA= ×2=1,CD⊥OA,

∵OC=2,

∴CD=2CM=2 =2 =2


(2)

证明:∵PA=OA=2,AM=OM=1,CM= CD= ,∠CMP=∠OMC=90°,

∴PC= = =2

∵OC=2,PO=2+2=4,

∴PC2+OC2=(2 2+22=16=PO2

∴∠PCO=90°,

∴PC是⊙O的切线.


(3)

解:GEGF是定值,证明如下:如图

连接GA、AF、GB,

∵点G为 的中点,∴ =

∴∠BAG=∠AFG,

又∵∠AGE=∠FGA,

∴△AGE∽△FGA,

=

∴GEGF=AG2

∵AB为直径,AB=4,

∴∠BAG=∠ABG=45°,

∴AG=2

∴GEGF=8.


【解析】(1)连接OC,根据翻折的性质求出OM,CD⊥OA,再利用勾股定理列式求解即可;
    (2)利用勾股定理列式求出PC,然后利用勾股定理逆定理求出∠PCO=90°,再根据圆的切线的定义证明即可;
    (3)连接GA、AF、GB,根据等弧所对的圆周角相等可得∠BAG=∠AFG,然后根据两组角对应相等两三角相似求出△AGE和△FGA相似,根据相似三角形对应边成比例可得 = ,从而得到GEGF=AG2 , 再根据等腰直角三角形的性质求解即可. 本题是圆的综合题型,主要利用了翻折变换的性质,垂径定理,勾股定理,勾股定理逆定理,圆的切线的定义,相似三角形的判定与性质,难点在于(3)作辅助线构造出相似三角形.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网