题目内容
【题目】如图,在△ABC中,AD⊥BC,AB=10,BD=8,∠ACD=45°.
(1)求线段AD的长;
(2)求△ABC的周长.
【答案】(1)6;(2).
【解析】
(1)由AD⊥BC可得出∠ADB=90°,在Rt△ABD中,利用勾股定理即可求出AD的长;
(2)由AD⊥BC、∠ACD=45°可得出△ACD为等腰直角三角形,结合AD的长度可得出CD、AC的长度,再利用周长的定理即可求出△ABC的周长.
解:(1)∵AD⊥BC,
∴∠ADB=90°.
在Rt△ABD中,∠ADB=90°,AB=10,BD=8,
∴AD==6.
(2)∵AD⊥BC,∠ACD=45°,
∴△ACD为等腰直角三角形,
又∵AD=6,
∴CD=6,AC=6,
∴C△ABC=AB+BD+CD+AC=24+6.
练习册系列答案
相关题目
【题目】2022年将在北京﹣﹣张家口举办冬季奥运会,北京将成为世界上第一个既举办夏季奥运会,又举办冬季奥运会的城市,某校开设了冰球选修课,12名同学被分成甲、乙两组进行训练,他们的身高(单位:cm)如表所示:
队员1 | 队员2 | 队员3 | 队员4 | 队员5 | 队员6 | |
甲组 | 176 | 177 | 175 | 176 | 177 | 175 |
乙组 | 178 | 175 | 170 | 174 | 183 | 176 |
设两队队员身高的平均数依次为 甲 , 乙 , 方差依次为S甲2 , S乙2 , 下列关系中正确的是( )
A. 甲= 乙 , S甲2<S乙2
B. 甲= 乙,S甲2>S乙2
C. 甲< 乙 , S甲2<S乙2
D. 甲> 乙 , S甲2>S乙2