题目内容
【题目】如图,正方形ABCD中,点P,Q分别为AD,CD边上的点,且DQ=CP,连接BQ,AP.求证:BQ=AP.
【答案】证明:∵四边形ABCD是正方形, ∴∠BAQ=∠ADP=90°,AB=DA,
∵DQ=CP,
∴AQ=DP,
在△ABQ和△DAP中,
,
∴△ABQ≌△DAP(SAS),
∴BQ=AP.
【解析】直接利用正方形的性质得出AQ=DP,再利用全等三角形的判定与性质得出答案.
【考点精析】利用正方形的性质对题目进行判断即可得到答案,需要熟知正方形四个角都是直角,四条边都相等;正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角;正方形的一条对角线把正方形分成两个全等的等腰直角三角形;正方形的对角线与边的夹角是45o;正方形的两条对角线把这个正方形分成四个全等的等腰直角三角形.
练习册系列答案
相关题目
【题目】小东根据学习函数的经验,对函数y= 图象与性质进行了探究,下面是小东的探究过程,请补充完整,并解决相关问题:
(1)函数y= 的自变量x的取值范围是;
(2)如表是y与x的几组对应值.
x | … | ﹣2 | ﹣1 | ﹣ | 0 |
| 1 |
| 2 |
| 3 | 4 | … |
y | … |
|
|
| 2 |
| 4 |
| 2 |
|
| m | … |
表中m的值为;
(3)如图,在平面直角坐标系中,描出了以上表中各对对应值为坐标的点,根据描出的点,画出函数y= 的大致图象;
(4)结合函数图象,请写出函数y= 的一条性质.
(5)解决问题:如果函数y= 与直线y=a的交点有2个,那么a的取值范围是 .