题目内容
【题目】如图,在中,,,分别是,上的动点,将沿折叠.
(1)当点与点重合时,如图1.若,,则的周长为_____.
(2)定义:若在三角形中,期中一条边是另一条边的2倍,则称这个三角形为“倍边三角形”.当点与点重合时,如图2.若,则是倍边三角形吗?请说明理由.
【答案】(1)16;(2)△ACE是倍边三角形,理由见解析.
【解析】
(1)将△ACD的周长转化为求AC与AB的和即可.
(2)只需求出2CE=AE即可.
(1)∵BD=CD,
∴△ACD的周长=AC+AD+CD=AC+AD+BD=AC+AB=10+6=16,
(2)∵AB=2AC,
∴∠B=30°,
∵AE=EB,∠ACB=90°,
∴∠CAE=∠EAB=∠B=30°,
∴2CE=AE,
∴△ACE是倍边三角形.
【题目】为降低空气污染,公交公司决定全部更换节能环保的燃气公交车.计划购买A型和B型两种公交车共10辆,其中每台的价格,年均载客量如表:
A型 | B型 | |
价格(万元/辆) | a | b |
年均载客量(万人/年/辆) | 60 | 100 |
若购买A型公交车1辆,B型公交车2辆,共需400万元;若购买A型公交车2辆,B型公交车1辆,共需350万元
(1)求购买每辆A型公交车和每辆B型公交车分别多少万元?
(2)如果该公司购买A型和B型公交车的总费用不超过1200万元,且确保这10辆公交车年均载客总和不少于680万人次,有哪几种购车方案?请你设计一个方案,使得购车总费用最少.
【题目】“金山”超市现有甲、乙两种糖果若干kg,两种糖果的售价和进价如表
糖果 | 甲种 | 乙种 |
售价 | 36元/kg | 20元/kg |
进价 | 30元/kg | 16元/kg |
(1)超市准备用甲、乙两种糖果混合成杂拌糖出售,混合后糖果的售价是27.2元/kg,现要配制这种杂拌糖果100/kg,需要甲、乙两种糖果各多少千克?
(2)“六一”儿童节前夕,超市准备用5000元购进甲、乙两种糖果共200kg,如何进货才能使这批糖果获得最大利润,最大利润是多少?(注:进货量只能为整数)