题目内容
【题目】一个小风筝与一个大风等形状完全相同,它们的形状如图所示,其中对角线AC⊥BD.已知它们的对应边之比为1:3,小风筝两条对角线的长分別为12cm和14cm.
(1)小风筝的面积是多少?
(2)如果在大风筝内装设一个连接对角顶点的十字交叉形的支撑架,那么至少需用多长的材料?(不记损耗)
(3)大风筝要用彩色纸覆盖,而彩色纸是从一张刚好覆盖整个风筝的矩形彩色纸(如图中虚线所示)裁剪下来的,那么从四个角裁剪下来废弃不用的彩色纸的面积是多少?
【答案】(1)84(cm)2;(2) 78cm;(3) 756(cm)2
【解析】
(1)根据三角形的面积公式列式计算即可;
(2)根据相似三角形的性质得到A′C′=3AC=42cm,同理B′D′=3BD=36cm,于是得到结论;
(3)根据矩形和三角形的面积公式即可得到结论.
解:(1)∵AC⊥BD,
∴小风筝的面积S=ACBD=×12×14=84(cm)2;
(2)∵小风筝与大风筝形状完全相同,
∴假设大风筝的四个顶点为A′,B′,C′,D′,
∴△ABCD∽△A′B′C′D′,
∵它们的对应边之比为1:3,
∴A′C′=3AC=42cm,
同理B′D′=3BD=36cm,
∴至少需用42+36=78cm的材料;
(3)从四个角裁剪下来废弃不用的彩色纸的面积=矩形的面积﹣大风筝的面积=42×36﹣9×84=756(cm)2.
【题目】阅读下面内容,并按要求解决问题:
问题:“在平面内,已知分别有2个点,3个点,4个点,5个点,…,个点,其中任意三个点都不在同一条直线上经过每两点画一条直线,它们可以分别画多少条直线?”
探究:为了解决这个问题,希望小组的同学们,设计了如下表格进行探究:(为了方便研究问题,图中每条线段表示过线段两端点的一条直线)
点数 | 2 | 3 | 4 | 5 | … | |
示意图 | … | |||||
直线条数 | 1 | … |
请解答下列问题:
(1)请帮助希望小组归纳,并直接写出结论:当平面内有个点时,直线条数为______;
(2)若某同学按照本题中的方法,共画了28条直线,求该平面内有多少个已知点?
【题目】“五一”前夕,某经销商计划花23500元购买A、B、C三种新款时装共50套进行试销,并且购进的C种时装套数不少于B种时装套数,且不超过A种时装套数,设购进A种时装x套,B种时装y套,三种时装的进价和售价如下表所示.
型号 | A | B | C |
进价(元/套) | 400 | 550 | 500 |
售价(元/套) | 500 | 700 | 650 |
(1)求y与x之间的函数关系式;
(2)满足条件的进货方案有哪几种?写出解答过程;
(3)假设所购进的这三种时装能全部卖出,且在购销这批时装的过程中需要另外支出各种费用1000元.通过计算判断哪种进货方案利润最大.