题目内容
【题目】如图,点P是正方形ABCD边AB上一点(不与点A,B重合),连接PD并将线段PD绕点P顺时针方向旋转90°得到线段PE,PE交边BC于点F,连接BE,DF.
(1)求证:∠ADP=∠EPB;
(2)求∠CBE的度数;
(3)当△PFD∽△BFP时,求tan∠FPB.
【答案】(1)详见解析;(2)45°;(3)tan∠FPB=.
【解析】
(1)根据∠ADP与∠EPB都是∠APD的余角,根据同角的余角相等,即可求证;
(2)首先证得△PAD≌△EQP,可以证得△BEQ是等腰直角三角形,可以证得∠EBQ=45°,即可证得∠CBE=45°;
(3)先由△PFD∽△BFP,得出PDBF=PBPF,再判断出△DAP∽△PBF,得出PDBF=APPF,进而得出PA=PB,即可得出AD=2PA,即可得出结论.
(1)证明:∵四边形ABCD是正方形.
∴∠A=∠PBC=90°,AB=AD,
∴∠ADP+∠APD=90°,
∵∠DPE=90°,
∴∠APD+∠EPB=90°,
∴∠ADP=∠EPB;
(2)解:过点E作EQ⊥AB交AB的延长线于点Q,则∠EQP=∠A=90°,
又∵∠ADP=∠EPB,PD=PE,
在△PAD与△EQP中,
,
∴△PAD≌△EQP(AAS),
∴EQ=AP,AD=AB=PQ,
∴AP=EQ=BQ,
∴∠CBE=∠EBQ=45°;
(3)∵△PFD∽△BFP,
∴ ,
∴PDBF=PBPF,
∵∠ADP=∠EPB,∠CBP=∠A=90°,
∴△DAP∽△PBF,
∴,
∴PDBF=APPF,
∴PBBF=APPF,
∴PA=PB,
∵四边形ABCD是正方形,
∴AD=AB=PA+PB=2PA,
∴tan∠ADP=,
∴tan∠FPB=.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目