题目内容
【题目】如图,已知直线∥AB,与 AB 之间的距离为 2 ,C、D 是直线上两个动点(点 C在 D 点的左侧),且 AB=CD=5.连接 AC、BC、BD,将△ABC 沿 BC 折叠得到△A′BC.若以 A′、C、B、D 为顶点的四边形为矩形,则此矩形相邻两边之和为____.
【答案】3或 7
【解析】
根据平行四边形的判定方法可得到四边形ABCD为平行四边形,当∠CBD=90°,则∠BCA=90°,由于S△A1CB=S△ABC=5,则S矩形A′CBD=10,根据勾股定理和完全平方公式进行计算;当∠BCD=90°,则∠CBA=90°,易得BC=2,而CD=5可得计算出结果.
∵AB=CD=5,AB∥CD,
∴四边形ABCD为平行四边形,
∴四边形ABDC的面积=2×5=10,
设矩形的边长分别为a,b,
当∠CBD=90°,
∵四边形ABDC是平行四边形,
∴∠BCA=90°,
∴S△A′CB=S△ABC=×2×5=5,
∴S矩形A′CBD=10,即ab=10,
而BA′=BA=5,
∴a2+b2=25,
∴(a+b)2=a2+b2+2ab=45,
∴a+b=3,
当∠BCD=90°时,
∵四边形ABDC是平行四边形,
∴∠CBA=90°,
∴BC=2,
而CD=5,
∴(a+b)2=(2+5)2=49,
∴a+b=7,
∴此矩形相邻两边之和为3或7.
故答案是:3或7.
练习册系列答案
相关题目