题目内容
【题目】在Rt△ABC中,已知∠ACB=90°,AC=BC=4,若点E在△ABC内部运动,且满足AE2=BE2+2CE2,则点E的运动路径长是__________.
【答案】
【解析】
过C作CF⊥CE且CE=CF,可得EF2=2CE2、 ∠ECF=∠ACB=90°、∠CEF=∠CFE=45°;再证明△ACE≌△CFB,可得AE=BF;然后再证FEB=90°,即∠BCE=135°;作△CEB的外接圆,圆心为O,取圆上任意一定G,连接BO、CO、BG、CG,根据四边形的外接圆的性质可得∠CGB=45°,∠COB=90°;再求得OB的长,最后运用弧长公式解答即可.
解:如图:过C作CF⊥CE且CE=CF
∴EF2=2CE2,∠ECF=∠ACB=90°,∠CEF=∠CFE=45°
∵∠ACE=∠ACB-∠ECB, ∠BCF=∠ECF-∠ECB,
∴∠ACE=∠BCF
∵在△ACE和△CFB中,AC=BC, ∠ACE=∠BCF,CE=CF
∴△ACE≌△CFB
∴AE=BF
∵AE2=BE2+2CE2
∴AE2=BE2+EF2
∴BF2=BE2+EF2,即∠FEB=90°
∴∠BCE=∠CEF+∠FEB=135°
如图:作△CEB的外接圆,圆心为O,取圆上任意一定G,连接BO、CO、BG、CG
则⊙O是四边形CEBG的外接圆
∴∠CGB=180°-∠BCE =45°
∴∠COB=90°
∵BC=4,OB=OC
∴OB=2
∴==
故答案为.
【题目】为了庆祝中华人民共和国成立70周年,某市决定开展“我和祖国共成长”主题演讲比赛,某中学将参加本校选拔赛的40名选手的成绩(满分为100分,得分为正整数且无满分,最低为75分)分成五组,并绘制了下列不完整的统计图表.
分数段 | 频数 | 频率 |
74.5~79.5 | 2 | 0.05 |
79.5~84.5 | m | 0.2 |
84.5~89.5 | 12 | 0.3 |
89.5~94.5 | 14 | n |
94.5~99.5 | 4 | 0.1 |
(1)表中m=__________,n=____________;
(2)请在图中补全频数直方图;
(3)甲同学的比赛成绩是40位参赛选手成绩的中位数,据此推测他的成绩落在_________分数段内;
(4)选拔赛中,成绩在94.5分以上的选手,男生和女生各占一半,学校从中随机确定2名选手参加全市决赛,请用列举法或树状图法求恰好是一名男生和一名女生的概率.