题目内容
【题目】在一场足球比赛中,一球员从球门正前方10米处起脚射门,当球飞行的水平距离为6米时达到最高点,此时球高为3米.
(1)如图建立直角坐标系,当球飞行的路线为一抛物线时,求此抛物线的解析式.
(2)已知球门高为2.44米,问此球能否射中球门(不计其它情况).
【答案】(1)y=﹣(x﹣4)2+3;(2)能射中球门.
【解析】
(1)根据条件可以得到抛物线的顶点坐标是(4,3),利用待定系数法即可求得函数的解析式;
(2)求出当x=0时,抛物线的函数值,与2.44米进行比较即可判断.
(1)抛物线的顶点坐标是(4,3),
设抛物线的解析式是:y=a(x﹣4)2+3,
把(10,0)代入得36a+3=0,
解得a=-,
则抛物线是y=﹣(x﹣4)2+3;
(2)当x=0时,y=-×16+3=3﹣=<2.44米.
故能射中球门.
练习册系列答案
相关题目