题目内容
【题目】如图,已知点A,点C在反比例函数y=(k>0,x>0)的图象上,AB⊥x轴于点B,OC交AB于点D,若CD=OD,则△AOD与△BCD的面积比为__.
【答案】3.
【解析】
作CE⊥x轴于E,如图,利用平行线分线段成比例得到===,设D(m,n),则C(2m,2n),再根据反比例函数图象上点的坐标特征得到k=4mn,则A(m,4n),然后根据三角形面积公式用m、n表示S△AOD和S△BCD,从而得到它们的比.
作CE⊥x轴于E,如图,
∵DB∥CE,
∴===,
设D(m,n),则C(2m,2n),
∵C(2m,2n)在反比例函数图象上,
∴k=2m×2n=4mn,
∴A(m,4n),
∵S△AOD=×(4n﹣n)×m=mn,S△BCD=×(2m﹣m)×n=mn
∴△AOD与△BCD的面积比=mn:mn=3.
故答案为3.
练习册系列答案
相关题目