题目内容
【题目】如图,已知矩形ABCD中,AB=4cm,BC=6cm,动点P从点C开始,以1cm/s的速度在BC的延长线上向右匀速运动,连接AP交CD边于点E,把射线AP沿直线AD翻折,交CD的延长线于点Q,设点P的运动时间为t.
(1)若DQ=3cm,求t的值;
(2)设DQ=y,求出y与t的函数关系式;
(3)当t为何值时,△CPE与△AEQ的面积相等?
(4)在动点P运动过程中,△APQ的面积是否会发生变化?若变化,求出△APQ的面积S关于t的函数关系式;若不变,说明理由,并求出S的定值.
【答案】
(1)
解:∵四边形ABCD为矩形,
∴CD=AB=4cm,
∵AP沿直线AD翻折得到AQ,
∴QD=DE=3cm,
∴CE=CD﹣DE=4﹣3=1(cm),
当运动t秒时,则PC=tcm,
∴BP=(t+6)cm,
∵CD∥AB,
∴△PCE∽△PBA,
∴ = ,即 = ,
解得t=2
(2)
解:同(1)可知DE=DQ=y,则CE=4﹣y,
同理可得 = ,即 = ,
整理可得y=
(3)
解:不变,理由如下:
由(2)可知当CP=t时,QD= ,
则QE=2QD= ,CE=4﹣QD=4﹣ = ,
∴S△AEQ= QEAD= × ×6= ,
S△CPE= CPCE= ×t× = ,
当S△CPE=S△AEQ时,则有 = ,
解得t=6 或t=﹣6 (舍去),
∴当t的值为6 秒时,△CPE与△AEQ的面积相等
(4)
解:由(3)可知QE= ,
∴S△APQ=S△AQE+S△PQE= QEAD+ QECP= QE(AD+CP)= × ×(t+6)=24,
∴△APQ的面积为24,不变
【解析】(1)由折叠可知QD=DE,可求得CE,再利用平行可得△PCE∽△PBA,利用相似三角形的性质可得到关于t的方程,可求得t的值;(2)同(1)可用y表示出CE,同理可利用相似三角形的性质可得到关于y与t的函数关系式;(3)利用(2)中的关系式可用t表示出QE、CE,则可用t分别表示出△CPE与△AEQ的面积,由面积相等可得到关于t的方程,可求得t;(4)由(3)可用t分别表示出QE、CE,可表示出△APQ的面积为定值.
【考点精析】认真审题,首先需要了解三角形的面积(三角形的面积=1/2×底×高).
【题目】某林业部门要考察某种幼树在一定条件下的移植成活率,在同样的条件下对这种幼树进行大量移植,并统计成活情况,记录如下(其中频率结果保留小数点后三位)
移植总数(n) | 10 | 50 | 270 | 400 | 750 | 1500 | 3500 | 7000 | 9000 |
成活数(m) | 8 | 47 | 235 | 369 | 662 | 1335 | 3203 | 6335 | 8118 |
成活的频率 | 0.800 | 0.940 | 0.870 | 0.923 | 0.883 | 0.890 | 0.915 | 0.905 | 0.902 |
由此可以估计幼树移植成活的概率为 .