题目内容
【题目】“元旦”期间,某商场为了吸引顾客购物消费,设计了如图所示的一个转盘,转盘平均分成3份.
(1)求转动该转盘一次所得的颜色是黄色的概率;
(2)请用列表法或画树状图的方法来说明转动该转盘两次,两次所得的颜色相同的概率.
(3)该商场设计了如下两种奖励方案:方案一,转动该转盘一次,若转得的颜色是黄色则可得奖;方案二,转动该转盘两次,若两次转得的颜色相同则可得奖。如果你是顾客,你选择哪种方案比较划算?为什么?
【答案】
(1)解:该转盘平均分成3分,转动该转盘一次所得的颜色是黄色的概率为 。
(2)解:转动该转盘两次,两次所得的颜色如下,共有9种等可能出现的结果,两次所得的颜色相同的次数为5次,故概率为 .
红 | 红 | 黄 | |
红 | 红红 | 红红 | 红黄 |
红 | 红红 | 红红 | 红黄 |
黄 | 红黄 | 红黄 | 黄黄 |
(3)解:选择方案二,因为 > ,方案二得奖的可能性大。
【解析】(1)依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率.(2)是否划算,求出两种方法得奖的概率,比较是否相等即可.
【考点精析】根据题目的已知条件,利用列表法与树状图法的相关知识可以得到问题的答案,需要掌握当一次试验要设计三个或更多的因素时,用列表法就不方便了,为了不重不漏地列出所有可能的结果,通常采用树状图法求概率.
【题目】抛物线y=ax+bx+c上部分点的横坐标x,纵坐标y的对应值如下表,从下表可知:
x | … | -2 | -1 | 0 | 1 | 2 | … |
y | … | 0 | 4 | 6 | 6 | 4 | … |
下列说法错误的是( )。
A.抛物线与x轴的另一个交点为(3,0);
B.函数的最大值为6;
C.抛物线的对称轴是直线x=0.5;
D.在对称轴的左侧,y随x的增大而增大。
【题目】已知二次函数y=ax2+bx+c的y与x的部分对应值如下表:
x | … | ﹣1 | 0 | 1 | 3 | … |
y | … | ﹣3 | 1 | 3 | 1 | … |
则下列判断正确的是( )
A.抛物线开口向上
B.抛物线与y轴交于负半轴
C.当x=4时,y>0
D.方程ax2+bx+c=0的正根在3与4之间