题目内容
【题目】操作探究:
数学研究课上,老师带领大家探究《折纸中的数学问题》时,出示如图1所示的长方形纸条ABCD,其中AD=BC=1,AB=CD=5.然后在纸条上任意画一条截线段MN,将纸片沿MN折叠,MB与DN交于点K,得到△MNK.如图2所示:
探究:
(1)若∠1=70°,∠MKN= °;
(2)改变折痕MN位置,△MNK始终是 三角形,请说明理由;
应用:
(3)爱动脑筋的小明在研究△MNK的面积时,发现KN边上的高始终是个不变的值.根据这一发现,他很快研究出△KMN的面积最小值为,此时∠1的大小可以为 °
(4)小明继续动手操作,发现了△MNK面积的最大值.请你求出这个最大值.
【答案】(1)、40;(2)、等腰;(3)、45°或135°(4)、最大值为1.3.
【解析】
试题分析:(1)、根据矩形的性质和折叠的性质求出∠KNM,∠KMN的度数,根据三角形内角和即可求解;
(2)、利用翻折变换的性质以及两直线平行内错角相等得出KM=KN;(3)、利用当△KMN的面积最小值为时,KN=BC=1,故KN⊥B′M,得出∠1=∠NMB=45°,同理当将纸条向下折叠时,∠1=∠NMB=135°;(4)、分情况一:将矩形纸片对折,使点B与D重合,此时点K也与D重合;情况二:将矩形纸片沿对角线AC对折,此时折痕即为AC两种情况讨论求解.
试题解析:(1)、如图1, ∵四边形ABCD是矩形, ∴AM∥DN. ∴∠KNM=∠1. ∵∠1=70°,
∴∠KNM=∠KMN=∠1=70°, ∴∠MKN=40°.
(2)、等腰, 理由:∵AB∥CD,∴∠1=∠MND, ∵将纸片沿MN折叠, BGFYTTTQ ∴∠1=∠KMN,∠MND=∠KMN,
∴KM=KN;
(3)、如图2,当△KMN的面积最小值为时,KN=BC=1,故KN⊥B′M, ∵∠NMB=∠KMN,∠KMB=90°,
∴∠1=∠NMB=45°,同理当将纸条向下折叠时,∠1=∠NMB=135°,
(4)、分两种情况:
情况一:如图3,将矩形纸片对折,使点B与D重合,此时点K也与D重合. MK=MB=x,则AM=5﹣x.
由勾股定理得12+(5﹣x)2=x2, 解得x=2.6. ∴MD=ND=2.6. S△MNK=S△MND=×1×2.6=1.3.
情况二:如图4,将矩形纸片沿对角线AC对折,此时折痕即为AC. MK=AK=CK=x,则DK=5﹣x.
同理可得MK=NK=2.6. ∵MD=1, ∴S△MNK=×1×2.6=1.3. △MNK的面积最大值为1.3.