题目内容

已知在平面直角坐标系xOy中,二次函数y=x2-bx+c(b>0)的图象经过点A(-1,b),与y轴相交于点B,且∠ABO的余切值为3.
(1)求点B的坐标;
(2)求这个函数的解析式;
(3)如果这个函数图象的顶点为C,求证:∠ACB=∠ABO.
(1)根据题意,得b=1+b+c.
∴c=-1.
∴B(0,-1);

(2)过点A作AH⊥y轴,垂足为点H.
∵∠ABO的余切值为3,∴cot∠ABO=
BH
AH
=3

而AH=1,∴BH=3.
∵BO=1,∴HO=2.
∴b=2.
∴所求函数的解析式为y=x2-2x-1;

(3)由y=x2-2x-1=(x-1)2-2,得顶点C的坐标为(1,-2).
AC=2
5
AB=
10
BC=
2
AO=
5
,BO=1.
AC
AB
=
AB
AO
=
BC
BO
=
2

∴△ABC△AOB.
∴∠ACB=∠ABO.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网