题目内容

如图,圆M与x轴相交于A,B两点,其坐标分别为A(-3,0),B(1,0),直径CD垂直于x轴于N,直线CE切圆M于C,直线FG切圆M于F,交CE于G,已知点G的横坐标为3,
(1)若抛物线y=-x2-2x+m经过A,B,D三点,求m的值及点D的坐标;
(2)求直线DF的解析式;
(3)是否存在过点G的直线,使它与(1)中抛物线的两个交点的横坐标之和等于4?若存在,请求出满足条件的直线的解析式;若不存在,请说明理由.
(1)∵抛物线y=-x2-2x+m过点A,B两点,
∴-3×1=-m,
∴抛物线为y=-x2-2x+3,
又∵抛物线过点D,由圆的对称性知点D为抛物线的顶点,
∴D点坐标为(-1,4).

(2)由题意知AB=4,
∵CD⊥x轴,
∴NA=NB=2,
∴ON=1,
由相交弦定理得NA•NB=ND•NC,
∴NC×4=2×2,NC=1,
∴C的坐标为(-1,-1),
设直线DF交CE于P,连接CF,得∠CFP=90°,
∵CG,FG为圆M的切线,
∴FG=GC,
∴∠1=∠3,
∴∠2=∠FPC,
∴FG=GP,
∴GC=GP,
可得CP=8,
∴P点的坐标为(7,-1);
设直线DF的解析式为y=kx+b(k≠0),
-k+b=4
7k+b=-1

解得
k=-
5
8
b=
27
8

∴直线DF的解析式为y=-
5
8
x+
27
8


(3)假设存在过G的直线y=k1x+b1
则3k1+b1=-1,
∴b1=-3k1-1,
解方程组
y=k1x-3k1-1
y=-x2-2x+3

得x2+(2+k1)x-3k1-4=0,
由题意得-2-k1=4,
∴k1=-6,
∴△=-40<0,
∴方程无实数根,
∴方程组无实数解;
∴满足条件的直线不存在.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网