题目内容
【题目】如图,四边形中,平分.
(1)求证:;
(2)求证:点是的中点;
(3)若,求的长.
【答案】(1)见解析;(2)见解析;(3)
【解析】
(1)通过证明△ABD∽△BCD,可得,可得结论;
(2)通过和相似得出∠MBD=∠MDB,在利用同角的余角相等得出∠A=∠ABM,由等腰三角形的性质可得结论;
(3)由平行线的性质可证∠MBD=∠BDC,即可证AM=MD=MB=4,由BD2=ADCD和勾股定理可求MC的长,通过证明△MNB∽△CND,可得.
解:(1)证明:∵DB平分∠ADC,
∴∠ADB=∠CDB,且∠ABD=∠BCD=90°,
∴△ABD∽△BCD,
∴,
∴BD2=ADCD
(2)证明:∵,
∴∠MBD=∠BDC,∠MBC=90°,
∵∠MDB=∠CDB,
∴∠MBD=∠MDB,
∴MB=MD,
∵∠MBD+∠ABM=90°,
∴∠ABM=∠CBD,
∵∠CBD=∠A,
∴∠A=∠ABM,
∴MA=MB,
∴MA=MD,
即M为AD中点;
(3)∵BM∥CD
∴∠MBD=∠BDC
∴∠ADB=∠MBD,且∠ABD=90°
∴BM=MD,∠MAB=∠MBA
∴BM=MD=AM=4
∵BD2=ADCD,且CD=6,AD=8,
∴BD2=48,
∴BC2=BD2-CD2=12
∴MC2=MB2+BC2=28
∴MC=,
∵BM∥CD
∴△MNB∽△CND
∴,且MC=,
∴.
练习册系列答案
相关题目