题目内容
【题目】如图,直线y=﹣x+m与抛物线y=ax2+bx都经过点A(6,0),点B,过B作BH垂直x轴于H,OA=3OH.直线OC与抛物线AB段交于点C.
(1)求抛物线的解析式;
(2)当点C的纵坐标是时,求直线OC与直线AB的交点D的坐标;
(3)在(2)的条件下将△OBH沿BA方向平移到△MPN,顶点P始终在线段AB上,求△MPN与△OAC公共部分面积的最大值.
【答案】(1)y=-x2+3x;(2)(4,2);(3)
【解析】
(1)先求出直线AB的解析式,求出点B坐标,再将A,B的坐标代入y=ax2+bx即可;
(2)求出直线AC的解析式,再联立直线OC与直线AB的解析式即可;
(3)设PM与OC、PA分别交于G、H,PN与OC、OA分别交于K、F,分别求出直线OB,PM,OC的解析式,再分别用含a的代数式表示出H,G,E,F的坐标,最后分情况讨论,可求出△MPN与△OAC公共部分面积的最大值.
解:(1)∵直线y=﹣x+m点A(6,0),
∴﹣6+m=0,
∴m=6,
∴yAB=﹣x+6,
∵OA=3OH,
∴OH=2,
在yAB=﹣x+6中,当x=2时,y=4,
∴B(2,4),
将A(6,0),B(2,4)代入y=ax2+bx,
得,,
解得,a=﹣,b=3,
∴抛物线的解析式为y=-x2+3x;
(2)∵直线OC与抛物线AB段交于点C,且点C的纵坐标是,
∴=﹣x2+3x,
解得,x1=1(舍去),x2=5,
∴C(5,),
设yOC=kx,
将C(5,)代入,
得,k=,
∴yOC=x,
联立,
解得,x=4,y=2,
∴点D的坐标为(4,2);
(3)设直线OB的解析式为yOB=mx,点P坐标为(a,﹣a+6),
将点B(2,4)代入,
得,m=2,
∴yOB=2x,
由平移知,PM∥OB,
∴设直线PM的解析式为yPM=2x+n,
将P(a,﹣a+6)代入,
得,﹣a+6=2a+n,
∴n=6﹣3a,
∴yPM=2x+6﹣3a,
设PM与OC、PA分别交于G、H,PN与OC、OA分别交于K、F,
联立,
解得,x=2a﹣4,y=a﹣2,
∴G(2a﹣4,a﹣2),yG=a﹣2,
在yPM=2x+6﹣3a中,
当y=0时,x=,
∴E(,0),OE=,
∵点P的横坐标为a,
∴K(a,a),F(a,0),
∴OF=a,KF=a,
设△MPN与△OAC公共部分面积为S,
①当0≤a<4时,
S=S△OFK﹣S△OEG,
=×a×a﹣()(a﹣2),
=﹣a2+3a﹣3
=﹣(a﹣3)2+,
∵﹣<0,根据二次函数的图象及性质可知,
∴当a=3时S有最大值;
②当4≤a≤6时,
S=S△PEF
=EFPF
=(a﹣a+3)(﹣a+6)
=
=,
∵,根据二次函数的图象及性质知,当a=4时,S有最大值1;
∵
∴△MPN与△OAC公共部分面积的最大值为.