题目内容

【题目】如图,在平面直角坐标系中,已知⊙A经过点E,B,C,O,且C(0,6)、E(﹣8,0)、O(0,0),则cos∠OBC的值为( )

A.
B.
C.
D.

【答案】B
【解析】解:连接EC,

∵∠COE=90°,

∴EC是⊙A的直径,

∵C(0,6),E(﹣8,0),O(0,0),

∴OC=6,OE=8,

由勾股定理得:EC=10,

∵∠OBC=∠OEC,

∴cos∠OBC=cos∠OEC= = =

所以答案是:B.

【考点精析】利用圆周角定理和解直角三角形对题目进行判断即可得到答案,需要熟知顶点在圆心上的角叫做圆心角;顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角;一条弧所对的圆周角等于它所对的圆心角的一半;解直角三角形的依据:①边的关系a2+b2=c2;②角的关系:A+B=90°;③边角关系:三角函数的定义.(注意:尽量避免使用中间数据和除法)

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网