题目内容
【题目】如图,已知△ABC是腰长为1的等腰直角三形,以Rt△ABC的斜边AC为直角边,画第二个等腰Rt△ACD,再以Rt△ACD的斜边AD为直角边,画第三个等腰Rt△ADE,…,依此类推,则第2018个等腰直角三角形的斜边长是______.
【答案】()2018
【解析】
首先根据△ABC是腰长为1的等腰直角三形,求出△ABC的斜边长是,然后根据以Rt△ABC的斜边AC为直角边,画第二个等腰Rt△ACD,求出第2个等腰直角三角形的斜边长是多少;再根据以Rt△ACD的斜边AD为直角边,画第三个等腰Rt△ADE,求出第3个等腰直角三角形的斜边长是多少,推出第2017个等腰直角三角形的斜边长是多少即可.
解:∵△ABC是腰长为1的等腰直角三形,
∴△ABC的斜边长是,
第2个等腰直角三角形的斜边长是:×=()2,
第3个等腰直角三角形的斜边长是:()2×=()3,
…,
∴第2012个等腰直角三角形的斜边长是()2018.
故答案为:()2018.
练习册系列答案
相关题目
【题目】二次函数y=ax2+bx+c(a、b、c为常数,且a≠0)中x与y的部分对应值如表:
x | ﹣1 | 0 | 1 | 3 |
y | ﹣1 | 3 | 5 | 3 |
①ac<0;
②当x>1时,y的值随x值的增大而减小;
③x=3是方程ax2+(b﹣1)x+c=0的一个根;
④当﹣1<x<3时,ax2+(b﹣1)x+c>0.
上述结论中正确的个数是( )
A.4
B.3
C.2
D.1