题目内容
【题目】如图,⊙M交x轴于B、C两点,交y轴于A,点M的纵坐标为2.B(﹣3,O),C(,O).
(1)求⊙M的半径;
(2)若CE⊥AB于H,交y轴于F,求证:EH=FH.
(3)在(2)的条件下求AF的长.
【答案】(1)4;(2)见解析;(3)4.
【解析】
(1)过M作MT⊥BC于T连BM,由垂径定理可求出BT的长,再由勾股定理即可求出BM的长;
(2)连接AE,由圆周角定理可得出∠AEC=∠ABC,再由AAS定理得出△AEH≌△AFH,进而可得出结论;
(3)先由(1)中△BMT的边长确定出∠BMT的度数,再由直角三角形的性质可求出CG的长,由平行四边形的判定定理判断出四边形AFCG为平行四边形,进而可求出答案.
(1)如图(一),过M作MT⊥BC于T连BM,
∵BC是⊙O的一条弦,MT是垂直于BC的直径,
∴BT=TC=BC=2,
∴BM==4;
(2)如图(二),连接AE,则∠AEC=∠ABC,
∵CE⊥AB,
∴∠HBC+∠BCH=90°
在△COF中,
∵∠OFC+∠OCF=90°,
∴∠HBC=∠OFC=∠AFH,
在△AEH和△AFH中,
∵,
∴△AEH≌△AFH(AAS),
∴EH=FH;
(3)由(1)易知,∠BMT=∠BAC=60°,
作直径BG,连CG,则∠BGC=∠BAC=60°,
∵⊙O的半径为4,
∴CG=4,
连AG,
∵∠BCG=90°,
∴CG⊥x轴,
∴CG∥AF,
∵∠BAG=90°,
∴AG⊥AB,
∵CE⊥AB,
∴AG∥CE,
∴四边形AFCG为口,
∴AF=CG=4.
练习册系列答案
相关题目