题目内容
【题目】每年的6月5日为世界环保日,为了提倡低碳环保,某公司决定购买10台节省能源的新设备,现有甲、乙两种型号的设备可供选购,经调查:购买了3台甲型设备比购买2台乙型设备多花了16万元,购买2台甲型设备比购买3台乙型设备少花6万元.
(1)求甲、乙两种型号设备的价格;
(2)该公司经预算决定购买节省能源的新设备的资金不超过110万元,你认为该公司有几种购买方案;
(3)在(2)的条件下,已知甲型设备的产量为240吨/月,乙型设备的产量为180吨/月,若每月要求总产量不低于2040吨,为了节约资金,请你为该公司设计一种最省钱的购买方案.
【答案】(1)甲,乙两种型号设备每台的价格分别为12万元和10万元;(2)有6种购买方案;(3)最省钱的购买方案是选购甲型设备4台,乙型设备6台.
【解析】
(1)设甲、乙两种型号设备每台的价格分别为万元和万元,根据购买了3台甲型设备比购买2台乙型设备多花了16万元,购买2台甲型设备比购买3台乙型设备少花6万元可列出方程组,解之即可;
(2)设购买甲型设备台,乙型设备台,根据购买节省能源的新设备的资金不超过110万元列不等式,解之确定m的值,即可确定方案;
(3)因为公司要求每月的产量不低于2040吨,据此可得关于m的不等式,解之即可由m的值确定方案,然后进行比较,做出选择即可.
(1)设甲、乙两种型号设备每台的价格分别为万元和万元,
由题意得:,
解得:,
则甲,乙两种型号设备每台的价格分别为12万元和10万元;
(2)设购买甲型设备台,乙型设备台,
则,
∴,
∵取非负整数,
∴,
∴有6种购买方案;
(3)由题意:,
∴,
∴为4或5,
当时,购买资金为:(万元),
当时,购买资金为:(万元),
则最省钱的购买方案是选购甲型设备4台,乙型设备6台.
【题目】某市为了鼓励居民节约用水,采用分段计费的方法按月计算每户家庭的水费,月用水量不超过20时,按2元/计费;月用水量超过20时,其中的20仍按2元/收费,超过部分按元/计费.设每户家庭用用水量为时,应交水费元.
(1)分别求出和时与的函数表达式;
(2)小明家第二季度交纳水费的情况如下:
月份 | 四月份 | 五月份 | 六月份 |
交费金额 | 30元 | 34元 | 42.6元 |
小明家这个季度共用水多少立方米?