题目内容
【题目】在△ABC中,∠ACB=90°,∠CAB=30°,点D在AB上,连接CD,并将CD绕点D逆时针旋转60°得到DE,连接AE.
(1)如图1,当点D为AB中点时,直接写出DE与AE长度之间的数量关系;
(2)如图2,当点D在线段AB上时,
① 根据题意补全图2;
② 猜想DE与AE长度之间的数量关系,并证明.
【答案】(1)DE=AE;(2)①补全图形见解析;②DE=AE,证明见解析.
【解析】
(1)想办法证明△ADE是等边三角形即可解决问题.
(2)①根据要求画出图形即可.
②首先证明△的长,△FBC都是等边三角形,再证明△ECF≌△DCB,推出∠4=∠5=60°,证明△EFA≌△EFC(SAS)可得结论.
解:(1)结论:DE=AE.
理由:如图1中,
∵∠ACB=90°,∠BAC=30°,
∴AB=2BC,∠B=60°,
∵AD=DB,
∴CD=AD=DB,
∴△CDB是等边三角形,
∴∠CDB=60°,
∵DC=DE,∠CDE=60°,
∴∠ADE=180°﹣∠ED﹣∠CDB=60°,
∵DA=DC,DC=DE,
∴AD=DE,
∴△ADE是等边三角形,
∴DE=AE.
(2)①图形如图2所示:
②如图2﹣1中,结论:DE=AE.
理由:取AB的中点F,连接CE,CF,EF.
∵∠ACB=90°,AF=BF,
∴CF=AF=BF,
∵∠B=60°,
∴△BCF是等边三角形,
∵DC=DE,∠CDE=60°,
∴△ECD是等边三角形,
∴∠1+∠2=∠2+∠3=60°,CE=CD,CF=CB,
∴∠1=∠3,
∴△ECF≌△DCB(SAS),
∴∠5=∠B=60°,
∵∠6=60°,
∴∠4=∠5=60°,
∵EF=EF,FA=FC,
∴△EFA≌△EFC(SAS),
∴AE=EC,
∵EC=ED,
∴AE=ED.