题目内容

【题目】如图 1,已知线段 AB=12 cm,点 C 为线段 AB 上的一动点(点 C 不与 AB 重合),点DE 分别是 AC BC 的中点.

1)若点 C 恰好是 AB 的中点,则 DE= cm

2)若 AC=4 cm,求 DE的长;

3)试说明当点C在线段 AB 上运动时,DE 的长不变;

4)如图 2,已知∠AOB=120°,在∠AOB 的内部任画一条射线 OC

①请分别画出∠AOC 和∠COB 的平分线 ODOE(不要求尺规作图);

②说明∠DOE 的度数与射线 OC 的位置无关.

【答案】16;(26cm;(3)证明见解析;(4)①答案见解析;②证明见解析.

【解析】

1)根据中点的概念,通过线段的和差倍分进行计算即可得解;

2)根据中点的概念,通过线段的和差倍分进行计算即可得解;

3)根据中点的概念,通过线段的和差倍分进行计算即可得解;

4)根据角平分线的概念,通过角的和差倍分进行计算即可得解.

1)∵CAB中点,AB=12cm

∵点DE分别是ACBC的中点,

2)∵

∵点分别是的中点,

3)∵点分别是的中点,

∴当点在线段上运动时,的长不变且为

4)①如图,

射线为所求的角平分线.

②∵分别平分

的度数与射线的位置无关.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网