题目内容
【题目】如图①,在四边形BCDE中,BC⊥CD,DE⊥CD,AB⊥AE,垂足分别为C,D,A,BC≠AC,点M,N,F分别为AB,AE,BE的中点,连接MN,MF,NF.
(1)如图②,当BC=4,DE=5,tan∠FMN=1时,求的值;
(2)若tan∠FMN=,BC=4,则可求出图中哪些线段的长?写出解答过程;
(3)连接CM,DN,CF,DF.试证明△FMC与△DNF全等;
(4)在(3)的条件下,图中还有哪些其它的全等三角形?请直接写出.
【答案】(1);(2)可求线段AD的长;(3)证明见解析;(4)△BMF≌△NFM≌△MAN≌△FNE.
【解析】(1)根据四边形ANFM是平行四边形,AB⊥AE,即可得到四边形ANFM是矩形,再根据FN=FM,即可得出矩形ANFM是正方形,AB=AE,结合∠1=∠3,∠C=∠D=90°,即可得到△ABC≌△EAD,进而得到BC=AD,CA=DE,即可得出;
(2)依据四边形MANF为矩形,MF=AE,NF=AB,tan∠FMN=,即可得到=,依据△ABC∽△EAD,即可得到==,即可得到AD的长;
(3)根据△ABC和△ADE都是直角三角形,M,N分别是AB,AE的中点,即可得到BM=CM,NA=ND,进而得出∠4=2∠1,∠5=2∠3,根据∠4=∠5,即可得到∠FMC=∠FND,再根据FM=DN,CM=NF,可得△FMC≌△DNF;
(4)由BM=AM=FN,MF=AN=NE,∠FMB=∠MFN=∠MAN=∠ENF=90°,即可得到:△BMF≌△NFM≌△MAN≌△FNE.
(1)∵点M,N,F分别为AB,AE,BE的中点,
∴MF,NF都是△ABE的中位线,
∴MF=AE=AN,NF=AB=AM,
∴四边形ANFM是平行四边形,
又∵AB⊥AE,
∴四边形ANFM是矩形,
又∵tan∠FMN=1,
∴FN=FM,
∴矩形ANFM是正方形,AB=AE,
又∵∠1+∠2=90°,∠2+∠3=90°,
∴∠1=∠3,
∵∠C=∠D=90°,
∴△ABC≌△EAD(AAS),
∴BC=AD=4,CA=DE=5,
∴=;
(2)可求线段AD的长.
由(1)可得,四边形MANF为矩形,MF=AE,NF=AB,
∵tan∠FMN=,即=,
∴=,
∵∠1=∠3,∠C=∠D=90°,
∴△ABC∽△EAD,
∴==,
∵BC=4,
∴AD=8;
(3)∵BC⊥CD,DE⊥CD,
∴△ABC和△ADE都是直角三角形,
∵M,N分别是AB,AE的中点,
∴BM=CM,NA=ND,
∴∠4=2∠1,∠5=2∠3,
∵∠1=∠3,
∴∠4=∠5,
∵∠FMC=90°+∠4,∠FND=90°+∠5,
∴∠FMC=∠FND,
∵FM=DN,CM=NF,
∴△FMC≌△DNF(SAS);
(4)在(3)的条件下,BM=AM=FN,MF=AN=NE,∠FMB=∠MFN=∠MAN=∠ENF=90°,
∴图中有:△BMF≌△NFM≌△MAN≌△FNE.
【题目】某市为了鼓励居民节约用水,采用分阶段计费的方法按月计算每户家庭的水费:月用水量不超过20m3时,按2元/m3计算;月用水量超过20m3时,其中的20m3仍按2元/m3计算,超过部分按2.6元/m3计算.设某户家庭月用水量xm3.
月份 | 4月 | 5月 | 6月 |
用水量 | 15 | 17 | 21 |
(1)用含x的式子表示:
当0≤x≤20时,水费为 元;
当x>20时,水费为 元.
(2)小花家第二季度用水情况如上表,小花家这个季度共缴纳水费多少元?