题目内容

【题目】已知△ABC和△ADE是等腰直角三角形,∠ACB=∠ADE=90°,点F为BE中点,连接DF,CF.

(1)如图1,当点D在AB上,点E在AC上,请直接写出此时线段DF,CF的数量关系和位置关系(不用证明);

(2)如图2,在(1)的条件下将△ADE绕点A顺时针旋转45°时,请你判断此时(1)中的结论是否仍然成立,并证明你的判断;

(3)如图3,在(1)的条件下将△ADE绕点A顺时针旋转90°时,若AD=1,AC= ,求此时线段CF的长(直接写出结果).

【答案】
(1)解:∵∠ACB=∠ADE=90°,点F为BE中点,

∴DF= BE,CF= BE,

∴DF=CF.

∵△ABC和△ADE是等腰直角三角形,

∴∠ABC=45°

∵BF=DF,

∴∠DBF=∠BDF,

∵∠DFE=∠ABE+∠BDF,

∴∠DFE=2∠DBF,

同理得:∠CFE=2∠CBF,

∴∠EFD+∠EFC=2∠DBF+2∠CBF=2∠ABC=90°,

∴DF=CF,且DF⊥CF


(2)解:(1)中的结论仍然成立.

证明:如图,此时点D落在AC上,延长DF交BC于点G.

∵∠ADE=∠ACB=90°,

∴DE∥BC.

∴∠DEF=∠GBF,∠EDF=∠BGF.

∵F为BE中点,

∴EF=BF.

∴△DEF≌△GBF.

∴DE=GB,DF=GF.

∵AD=DE,

∴AD=GB,

∵AC=BC,

∴AC﹣AD=BC﹣GB,

∴DC=GC.

∵∠ACB=90°,

∴△DCG是等腰直角三角形,

∵DF=GF.

∴DF=CF,DF⊥CF


(3)解:延长DF交BA于点H,

∵△ABC和△ADE是等腰直角三角形,

∴AC=BC,AD=DE.

∴∠AED=∠ABC=45°,

∵由旋转可以得出,∠CAE=∠BAD=90°,

∵AE∥BC,

∴∠AEB=∠CBE,

∴∠DEF=∠HBF.

∵F是BE的中点,

∴EF=BF,

∴△DEF≌△HBF,

∴ED=HB,

∵AC= ,在Rt△ABC中,由勾股定理,得

AB=4,

∵AD=1,

∴ED=BH=1,

∴AH=3,在Rt△HAD中由勾股定理,得

DH=

∴DF=

∴CF=

∴线段CF的长为


【解析】(1)根据“直角三角形斜边上的中线等于斜边的一半”可知DF=BF,根据∠DFE=2∠DCF,∠BFE=2∠BCF,得到∠EFD+∠EFB=2∠DCB=90°,DF⊥BF.(2)延长DF交BC于点G,先证明△DEF≌△GCF,得到DE=CG,DF=FG,根据AD=DE,AB=BC,得到BD=BG又因为∠ABC=90°,所以DF=CF且DF⊥BF.(3)延长DF交BA于点H,先证明△DEF≌△HBF,得到DE=BH,DF=FH,根据旋转条件可以△ADH为直角三角形,由△ABC和△ADE是等腰直角三角形,AC= ,可以求出AB的值,进而可以根据勾股定理可以求出DH,再求出DF,由DF=BF,求出得CF的值.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网