题目内容

【题目】如图,抛物线y= x2﹣2x﹣6 与x轴交于A,B两点(点A在点B左侧),与y轴交于点C,点D为顶点,点E在抛物线上,且横坐标为4 ,AE与y轴交F.

(1)求抛物线的顶点D和F的坐标;
(2)点M,N是抛物线对称轴上两点,且M(2 ,a),N(2 ,a+ ),是否存在a使F,C,M,N四点所围成的四边形周长最小,若存在,求出这个周长最小值,并求出a的值;
(3)连接BC交对称轴于点P,点Q是线段BD上的一个动点,自点D以2 个单位每秒的速度向终点B运动,连接PQ,将△DPQ沿PQ翻折,点D的对应点为D′,设Q点的运动时间为t(0≤t≤ )秒,求使得△D′PQ与△PQB重叠部分的面积为△DPQ面积的 时对应的t值.

【答案】
(1)

解:∵y= x2﹣2x﹣6 = (x﹣2 2﹣8

∴顶点D坐标(2 ,﹣8 ),

由题意E(4 ,﹣8 ),A(﹣2 ,0),B(6 ,0),

设直线AE解析式为y=kx+b,则有 ,解得

∴直线AE解析式为y=﹣x﹣2

∴点F坐标(0,﹣2


(2)

解:如图1中,作点F关于对称轴的对称点F′,连接FF′交对称轴于G,在CF上取一点C′,使得CC′= ,连接C′F′与对称轴交于点N,此时四边形CMNF周长最小.

∵四边形CMNF的周长=CF+NM+CM+FN=5 +CM+NF,CM+NF=C′N+NF=C′N+NF′=C′F′(两点之间线段最短),

∴此时四边形CMNF的周长最小.

∵C′F=3

∴GN= C′F=

∴﹣(a+ )=2 +

∴a=﹣

∵C′F′= =5

∴四边形CMNF的周长最小值=5 +5 =10


(3)

解:如图2中,作PF⊥BD于F,QH⊥对称轴于H.

由题意可知BD= =4 ,DQ=2 t,

∵SPQG= SDPQ= SPDQ

∴PG= PD′= PD=2 = BF,

情形①PG∥FB时,∵PF=PD,

∴BG=GD,

∴PG= BF=2

在Rt△QHD中,sin∠HDQ= ,DQ=2 t,

∴HQ=2 t,HD=4 t,

∵∠QPD′=∠QPD=45°,

∴PH=HQ=2 t,

∴PH+HD=PD,

∴6 t=4

∴t=

情形②如图3中,PG′=PG=2 ,作PM⊥BD于M,QK⊥PD于K,QJ⊥PD′于J.

由sin∠PDG=sin∠GPM= =

∴MG′=MG=

∴G′D=BD﹣GG′=

= =

∵∠QPD=∠QPG′,QK⊥PD,QJ⊥PG′,

∴QK=QJ,

= =2,

∴QD= × =

∴t= =

综上所述t= 秒时,△D′PQ与△PQB重叠部分的面积为△DPQ面积的


【解析】(1)利用配方法或公式法求顶点坐标,求出最小AE即可求出点F坐标.(2)如图1中,作点F关于对称轴的对称点F′,连接FF′交对称轴于G,在CF上取一点C′,使得CC′= ,连接C′F′与对称轴交于点N,此时四边形CMNF周长最小.(3)分两种情形①PG∥FB时;②如图3中,PG′=PG=2 ,作PM⊥BD于M,QK⊥PD于K,QJ⊥PD′于J.分别求解即可.
【考点精析】通过灵活运用二次函数的图象,掌握二次函数图像关键点:1、开口方向2、对称轴 3、顶点 4、与x轴交点 5、与y轴交点即可以解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网