题目内容
【题目】如图,ABCD中,∠DAB=30°,AB=6,BC=2,P为边CD上的一动点,则2PB+ PD的最小值等于______.
【答案】
【解析】
过点P作PE⊥AD交AD的延长线于点E,根据四边形ABCD是平行四边形,得到 AB∥CD,推出PE=PD,由此得到当PB+PE最小时2PB+ PD有最小值,此时P、B、E三点在同一条直线上,利用∠DAB=30°,∠AEP=90°,AB=6求出PB+PE的最小值=AB=3,得到2PB+ PD的最小值等于6.
过点P作PE⊥AD交AD的延长线于点E,
∵四边形ABCD是平行四边形,
∴AB∥CD,
∴∠EDC=∠DAB=30°,
∴PE=PD,
∵2PB+ PD=2(PB+PD)=2(PB+PE),
∴当PB+PE最小时2PB+ PD有最小值,此时P、B、E三点在同一条直线上,
∵∠DAB=30°,∠AEP=90°,AB=6,
∴PB+PE的最小值=AB=3,
∴2PB+ PD的最小值等于6,
故答案为:6.
练习册系列答案
相关题目