题目内容

【题目】如图,Rt△ABC中,∠C=90°,∠A=30°,BC=6.
(1)实践操作:尺规作图,不写作法,保留作图痕迹. ①作∠ABC的角平分线交AC于点D.
②作线段BD的垂直平分线,交AB于点E,交BC于点F,连接DE、DF.
(2)推理计算:四边形BFDE的面积为

【答案】
(1)解:如图,DE、DF为所作;


(2)8
【解析】解:(2)∵∠C=90°,∠A=30°, ∴∠ABC=60°,AB=2BC=12,
∵BD为∠ABC的角平分线,
∴∠DBC=∠EBD=30°,
∵EF垂直平分BD,
∴FB=FD,EB=ED,
∴∠FDB=∠DBC=30°,∠EDB=∠EBD=30°,
∴DE∥BF,BE∥DF,
∴四边形BEDF为平行四边形,
而FB=FD,
∴四边形BEDF为菱形,
在Rt△ADE中,DE= AE,
而AE=AB﹣BE,
∴12﹣BE= BE,解得BE=8,
在Rt△BDC中,CD= BC=2
∴四边形BFDE的面积= ×8×2 =8
所以答案是8
【考点精析】关于本题考查的线段垂直平分线的性质和含30度角的直角三角形,需要了解垂直于一条线段并且平分这条线段的直线是这条线段的垂直平分线;线段垂直平分线的性质定理:线段垂直平分线上的点和这条线段两个端点的距离相等;在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半才能得出正确答案.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网