题目内容
【题目】如图,抛物线y=﹣x2+bx+c与直线AB交于A(﹣4,﹣4),B(0,4)两点,直线AC:y=﹣ x﹣6交y轴于点C.点E是直线AB上的动点,过点E作EF⊥x轴交AC于点F,交抛物线于点G.
(1)求抛物线y=﹣x2+bx+c的表达式;
(2)连接GB,EO,当四边形GEOB是平行四边形时,求点G的坐标;
(3)①在y轴上存在一点H,连接EH,HF,当点E运动到什么位置时,以A,E,F,H为顶点的四边形是矩形?求出此时点E,H的坐标;
②在①的前提下,以点E为圆心,EH长为半径作圆,点M为⊙E上一动点,求 AM+CM它的最小值.
【答案】
(1)
解:∵点A(﹣4,﹣4),B(0,4)在抛物线y=﹣x2+bx+c上,
∴ ,
∴ ,
∴抛物线的解析式为y=﹣x2﹣2x+4;
(2)
解:设直线AB的解析式为y=kx+n过点A,B,
∴ ,
∴ ,
∴直线AB的解析式为y=2x+4,
设E(m,2m+4),
∴G(m,﹣m2﹣2m+4),
∵四边形GEOB是平行四边形,
∴EG=OB=4,
∴﹣m2﹣2m+4﹣2m﹣4=4,
∴m=﹣2,
∴G(﹣2,4);
(3)
解:①如图1,
由(2)知,直线AB的解析式为y=2x+4,
∴设E(a,2a+4),
∵直线AC:y=﹣ x﹣6,
∴F(a,﹣ a﹣6),
设H(0,p),
∵以点A,E,F,H为顶点的四边形是矩形,
∵直线AB的解析式为y=2x+4,直线AC:y=﹣ x﹣6,
∴AB⊥AC,
∴EF为对角线,
∴ (﹣4+0)= (a+a), (﹣4+p)= (2a+4﹣ a﹣6),
∴a=﹣2,P=﹣1,
∴E(﹣2,0).H(0,﹣1);
②如图2,
由①知,E(﹣2,0),H(0,﹣1),A(﹣4,﹣4),
∴EH= ,AE=2 ,
设AE交⊙E于G,取EG的中点P,
∴PE= ,
连接PC交⊙E于M,连接EM,
∴EM=EH= ,
∴ = ,
∵ = ,
∴ = ,∵∠PEM=∠MEA,
∴△PEM∽△MEA,
∴ ,
∴PM= AM,
∴ AM+CM的最小值=PC,
设点P(p,2p+4),
∵E(﹣2,0),
∴PE2=(p+2)2+(2p+4)2=5(p+2)2,
∵PE= ,
∴5(p+2)2= ,
∴p=﹣ 或p=﹣ (由于E(﹣2,0),所以舍去),
∴P(﹣ ,﹣1),
∵C(0,﹣6),
∴PC= = ,
即: AM+CM= .
【解析】(1)利用待定系数法求出抛物线解析式;(2)先利用待定系数法求出直线AB的解析式,进而利用平行四边形的对边相等建立方程求解即可;(3)①先判断出要以点A,E,F,H为顶点的四边形是矩形,只有EF为对角线,利用中点坐标公式建立方程即可;②先取EG的中点P进而判断出△PEM∽△MEA即可得出PM= AM,连接CP交圆E于M,再求出点P的坐标即可得出结论.
【考点精析】解答此题的关键在于理解二次函数的图象的相关知识,掌握二次函数图像关键点:1、开口方向2、对称轴 3、顶点 4、与x轴交点 5、与y轴交点,以及对二次函数的性质的理解,了解增减性:当a>0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大;当a<0时,对称轴左边,y随x增大而增大;对称轴右边,y随x增大而减小.