题目内容
【题目】已知抛物线y=﹣x2+2x+2
(1)求该抛物线的对称轴、顶点坐标以及y随x变化情况;
(2)在如图的直角坐标系内画出该抛物线的图象.
【答案】
(1)解:∵y=﹣x2+2x+2,
∴对称轴为:x=﹣ ,顶点坐标为:(﹣
,
),
∴对称轴为:x=1,顶点坐标为:(1,3).
∵a=﹣1<0,开口向下,
∴当x<1时,y随x的增大而增大;x>1时,y随x的增大而减小.
(2)解:列表如下:
x | … | ﹣1 | 0 | 1 | 2 | 3 | … |
y | … | ﹣1 | 2 | 3 | 2 | ﹣1 | … |
【解析】(1)根据抛物线解析式即可得出对称轴和顶点坐标,又因为抛物线开口向下,由二次函数的性质得出答案.
(2)先列表、描点、连线即可得出二次函数解析式.
【考点精析】掌握二次函数的图象和二次函数的性质是解答本题的根本,需要知道二次函数图像关键点:1、开口方向2、对称轴 3、顶点 4、与x轴交点 5、与y轴交点;增减性:当a>0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大;当a<0时,对称轴左边,y随x增大而增大;对称轴右边,y随x增大而减小.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目
【题目】随着信息技术的快速发展,“互联网+”渗透到我们日常生活的各个领域,网上在线学习交流已不再是梦,现有某教学网站策划了A,B两种上网学习的月收费方式:
收费方式 | 月使用费/元 | 包时上网时间/h | 超时费/(元/min) |
A | 7 | 25 | 0.01 |
B | m | n | 0.01 |
设每月上网学习时间为x小时,方案A,B的收费金额分别为yA,yB.
(1)如图是yB与x之间函数关系的图象,请根据图象填空:m= ;n=
(2)写出yA与x之间的函数关系式.
(3)选择哪种方式上网学习合算,为什么?