题目内容
【题目】△ABC中,∠ABC=30°,AB=4,AC=4,则BC=____.
【答案】8或4.
【解析】
分两种情况进行解答,一是∠ACB为锐角,另一种∠ACB为钝角,分别画出图形,通过作高,构造直角三角形,利用直角三角形的性质和边角关系进行解答即可.
①当∠ACB为锐角时,如图1,过点A作AD⊥BC,垂足为D,
在Rt△ABD中,∵∠ABC=30°,AB=4,
∴AD=AB=2,BD=cos30°×AB=6,
在Rt△ADC中,DC==2,
∴BC=AD+DC=6+2=8;
②当∠ACB为钝角时,如图2,过点A作AD⊥BC,交BC的延长线于点D,
在Rt△ABD中,∵∠ABC=30°,AB=4,
∴AD=AB=2,BD=cos30°×AB=6,
在Rt△ADC中,DC==2,
∴BC=AD﹣DC=6﹣2=4;
因此BC的长为8或4,
故答案为:8或4.
练习册系列答案
相关题目
【题目】在日历上,我们可以发现其中某些数满足一定的规律,如图是2012年8月份的日历. 我们任意选择其中所示的方框部分,将每个方框部分中4个位置上的数交叉相乘,再相减,例如:,,不难发现,结果都是7.
(1)请你再选择两个类似的部分试一试,看看是否符合这个规律;
(2)请你利用整式的运算对以上的规律加以证明.
日 | 一 | 二 | 三 | 四 | 五 | 六 |
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |