题目内容
【题目】如图,在△ABC中,AB=6,AC=10,AD是BC边上的中线,且AD=4,延长AD到点E,使DE=AD,连接CE.
(1)求证:△AEC是直角三角形.
(2)求BC边的长.
【答案】(1)证明见解析;(2)BC=.
【解析】
(1)首先证明△ABD≌△ECD,推出EC=AB=6,由AE2+EC2=AC2,推出△AEC是直角三角形.
(2)在Rt△CDE中,求出CD,根据BC=2CD即可解决问题.
(1)∵AD是BC边上的中线
∴BD=CD
又∵DE=AD, ∠ADB=∠CDE
∴△ABD≌△ECD,
∴EC=AB=6,
∵AE=8 ,AC=10
∴△AEC 中,AE2+EC2=AC2
∴△AEC是直角三角形.
(2)在Rt△CDE中,CD2=CE2+DE2=62+42=52
∴CD=
∴BC=2CD=.
【题目】在学校组织的“学习强国”知识竞赛中,每班参加比赛的人数相同,成绩分为,,,四个等级其中相应等级的得分依次记为分,分,分和分.年级组长张老师将班和班的成绩进行整理并绘制成如下的统计图:
(1)在本次竞赛中,班级的人数有多少。
(2)请你将下面的表格补充完整:
成绩 班级 | 平均数(分) | 中位数 (分) | 众数 (分) | B级及以上人数 |
班 | ||||
班 |
(3)结合以上统计量,请你从不同角度对这次竞赛成绩的结果进行分析(写出两条)
【题目】某公司购进某种矿石原料300吨,用于生产甲、乙两种产品,生产1吨甲产品或1吨乙产品所需该矿石和煤原料的吨数如下表:
产品资源 | 甲 | 乙 |
矿石(吨) | 10 | 4 |
煤(吨) | 4 | 8 |
生产1吨甲产品所需成本费用为4000元,每吨售价4600元;
生产1吨乙产品所需成本费用为4500元,每吨售价5500元,
现将该矿石原料全部用完,设生产甲产品x吨,乙产品m吨,公司获得的总利润为y元.
(1)写出m与x之间的关系式
(2)写出y与x之间的函数表达式,并写出自变量的范围
(3)若用煤不超过200吨,生产甲产品多少吨时,公司获得的总利润最大,最大利润是多少?