题目内容
【题目】某科技有限公司准备购进A和B两种机器人来搬运化工材料,已知购进A种机器人2个和B种机器人3个共需16万元,购进A种机器人3个和B种机器人2个共需14万元,请解答下列问题:
(1)求A、B两种机器人每个的进价;
(2)已知该公司购买B种机器人的个数比购买A种机器人的个数的2倍多4个,如果需要购买A、B两种机器人的总个数不少于28个,且该公司购买的A、B两种机器人的总费用不超过106万元,那么该公司有哪几种购买方案?
【答案】(1)A种机器人每个的进价是2万元,B种机器人每个的进价是4万元;(2)有如下两种方案:方案(1)购买A种机器人的个数是8个,则购买B种机器人的个数是20个;方案(2)购买A种机器人的个数是9个,则购买B种机器人的个数是22个.
【解析】分析:(1)、首先设A种机器人每个的进价是x万元,B种机器人每个的进价是y万元,根据题意列出二元一次方程组,从而得出答案;(2)、设购买A种机器人的个数是m个,则购买B种机器人的个数是(2m+4)个,根据题意列出不等式组,从而求出不等式组的解,根据解为整数得出方案.
详解:解:(1)、设A种机器人每个的进价是x万元,B种机器人每个的进价是y万元,依题意有:, 解得:.
故A种机器人每个的进价是2万元,B种机器人每个的进价是4万元;
(2)、设购买A种机器人的个数是m个,则购买B种机器人的个数是(2m+4)个,依题意有
, 解得:8≤m≤9, ∵m是整数, ∴m=8或9,
故有如下两种方案:
方案(1):m=8,2m+4=20,即购买A种机器人的个数是8个,则购买B种机器人的个数是20个;
方案(2):m=9,2m+4=22,即购买A种机器人的个数是9个,则购买B种机器人的个数是22个.
练习册系列答案
相关题目